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Abstract: 2-Trimethylsilylmethylenecyclopropane (2) was synthesized by reac- 

tion of lithio methylenecyclopropane with TMSCl. The lithium salt of 3 re- 

acts with some electrophiles by CI- or y-attack depending on the nature of 

the electrophile. Whereas alkenylbromides 8 and 2 or alkinylbromide '0 give 

exclusively a-attack, benzaldehyde reacts with y-alkylation. 

Recently some reports have been published dealing with the preparations and 

reactions of lithio methylenecyclopropanes 2 l-3) . = Up to now only the alkyla- 

tion of 2 with epoxides, aldehydes or ketones which give primary 2) = , secon- 

dary and tertiary alcohols 1,3) have been described. 
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We hoped to develop a general method for the functionalization of methylene- 

cyclopropanes hy first silylation and then alkylation under similiar condi- 

tions as used above, so that this method could be applied to prepare new 

starting materials for our work in the fields of Pd(0) and Ni(C) catalyzed 
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4) cycloadditons . 

Silylation of 2, prepared according to lit. 1) , with trimethylsilylchloride 

(TMSCl) gives methylenecyclopropane 2 in 72% yield. Furthermore, in situ 

deprotonation of 2 and subsequent silylation with TMSCl proceeds to give the 

bisilylated methylenecyclopropanes 5 and 6 in the ratio 88:12 
= = (7454 yield) 

contaminated with syn/anti trisilyl derivative z (13% yield). 
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Alkylation of the anion 4 with the a,w-alkenylbromides g, 29 a,~-alkinyl- 

bromide 2 and with 2-dimethoxyethylbromide _ll_ proceeds to give moderate to 

good yields of only one isomer (15-18) derived from reaction next to the TMS -- 

group (eqn.3 and table). Benzylchloride also gives the a-alkylated product 

2 with a significant amount (152) of trans-stilbene. These results differ 

somewhat from the known alkylation of allylsilanes in which mostly y-alkyla- 

tion 6) occurs . The reason for this seems to be the greater ring strain in 

cyclopropene derivatives compared with methylenecyclopropanes. The formation 

of the less stable l-(trimethylsilyl)methyl-2-trimethylsilylcyclopropene g 

in eqn.2 is possibly due to steric hinderance which does not allow the anion 

f to react exclusively with TMSCl in the a-position. 

As 1) in the work of Thomas , we anticipated that the alkylation of 4 with an 

aldehyde or a ketone is likely to occur on the cyclopropane ring next to the 

silicon. But the reaction with benzaldehyde proceeds through a number of 

coloured intermediates to give exclusively the cyclopropene derived from 

y-alkylation, as described with other lithiated allylsilanes 7). In situ 

silylation with TMSCl gave the thermally sensitive siloxane 20 in g00a 
- 

yields. Alkylation of 4 with acetone followed by silylation with TMSCl of 
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the reaction mixture gave both a cyclopropene c and a methylenecyclopropane 

21 in a ratio of 41~59. We believe that the reaction with benzaldehyde and 
= 

in part with acetone is best described by an electron transfer mechanism 7) . 

This would imply: formation of the benzoxyradical anion and subsequent 

coupling at the y-position of the radical cation of I. 

1 = 

1) n - BuLi I THF. -78”C+ 0°C 
2) TMS Cl, -78”c-0°C 

* 

3) n-BuLi, -78”C-O’C 
4) R’ 

R*>C-X or 
R* 

R 3’ R3;C=o 

['E;Err] 

alkylating # R' R2 RJ A B5) 
agent 

- - 

Br(CH2)3CH=CH2 8 (9)2CH=c~ H H 100 

Br(CH2)@H=CH2 Ii (C%)3CH=C% H H 100 

Br(Cf$J2(CH20)2 10 ~~m-y)2 H H lo;) 

Br(Cl$)4C CH 11 (C%13C CH H H 100 

c6H5c%c1 12 ‘gH5 H H 100 

C6H5CH0 1z O!l!MS ‘gH5 H 22 
m$)pO 3 O!l?MS 

9 cH3 59 22 

- - - 

Table 1: Regioselectivity and yields in the alkylation of 

2-trimethylsilyl-methylenecyclopropyllithium. 

55-56/l 

42/0.3 

62-63/O. 1 
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60-61 /o. 5 
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115130/0.01 

- 

General Procedure 

To 7.25g (0.134mol 

was added 77ml (0 

min. After warming 

to -78'C 14.6g (0 
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yield 

75s 

81% 

54% 

65% 

46% 

7@ 

67% 

of methylenecyclopropane in 300ml of THF cooled to -78'C 

134mol) of n-butyllithium in hexane over a period of 5 

to O°C in 30 min., stirring for 20 min. and cooling again 

134mol) of TMSCl was added. The reaction mixture was 

warmed again to O°C as described and 77ml (0.134mol) of n-butyllithium in 

hexane was added in 5 min. at -78OC. The warming procedure was repeated 

before addition of the alkylating agent (0.14mol) dissolved in 25ml THF at 

-78'C and stirring at room temperature for 5h. In the case of benzaldehyde 



or acetone the reaction mixture was warmed to O°C and 16.lg (0.148mol) of 

TMSCl was added. 

After normal workup the new methylenecyclopropanes were isolated by Kugel- 

rohrdistillation. Preparative gas chromatography was necessary to separate 

compound 19 from the trans-stilbene and the isomers G, g; 2, 2 and syn/an- - 

ti-l. 

1 
H NMR spectra: 

2:[5.26, 5.18 (ddd, J= 3.5, 4 and 5 Hz; 2H)]; 1.21 (ddd, J= 4, -6.5 and 10.5 

Hz; 1H); 0.86 (ddd, J= 3.5, -6.5 and 6.5 Hz; IH); 0.58 (ddd, J= 5, 6.5 and 

10.5 Hz; 1H); ca. 0 ppm (s, 9H). - 2: 6.75 (m, 1H); 5.03 (m, 1H); 0.99 (m, 

2H); 0.03 ppm (s, 18H). - i: 2.04 (s, 2H); 0.70 (s, 2H); 0.14 (s, 9H); 0.04 

(s, 9H). - 2: 5.77 (ddt, J= 17, 10.5, 6.5 Hz; 1H); 5.20 (m, 1H); 5.10 (d, 

J= 10.5 Hz; IH); 5.06 (d, J= 17 Hz; IH); 4.82 (m, IH); 1.93 (m, 2H); 1.38 

(m, 4H); 1.00 (ddd, J= 1.5, 2 and -6.5 Hz; 1H); 0.74 (ddd, J= 1.5, 2 and 

-6.5 Hz; IH); -0.03 ppm (s, 9H). - 2: c5.20, 5.12 (m, 2H)j; 4.69 (t, J= 

4Hz; 1~); [3.47, 3.37 (m, 4H)]; 1.67 (m, 4H); 0.96 (m, J= -7.5 and ca- l-2 

Hz; IH); 0.76 (m, J= -7.5 and ca. 1 Hz; IH); -0.03 ppm (s, 9H). - 18: 5.29 

(m, IH); 5.19 (in, IH); 1.91 (III, 2H); 1.72 (m, IH); 1.30 (m, 6H); 0.98 (ddd, 

J= 1.5, 2 and -7.5 Hz; IH); 0.70 (ddd, J= ca. 1, 2 and -7.5 Hz; 1H); -0.04 

ppm (gH). - 2: 6.9 (m, 5~); 4.91 (t, J= 6.5 Hz; 1H); L3.02 and 2.94 Cd, J= 

6.5 Hz; 2H)]; 1.90 (s, 2H); 0.05 (s, 9H); -0.05 PPm (S, 9@. 
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